Metamath Proof Explorer


Theorem nff1

Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004)

Ref Expression
Hypotheses nff1.1 _xF
nff1.2 _xA
nff1.3 _xB
Assertion nff1 xF:A1-1B

Proof

Step Hyp Ref Expression
1 nff1.1 _xF
2 nff1.2 _xA
3 nff1.3 _xB
4 df-f1 F:A1-1BF:ABFunF-1
5 1 2 3 nff xF:AB
6 1 nfcnv _xF-1
7 6 nffun xFunF-1
8 5 7 nfan xF:ABFunF-1
9 4 8 nfxfr xF:A1-1B