Metamath Proof Explorer


Theorem nfimad

Description: Deduction version of bound-variable hypothesis builder nfima . (Contributed by FL, 15-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses nfimad.2 φ_xA
nfimad.3 φ_xB
Assertion nfimad φ_xAB

Proof

Step Hyp Ref Expression
1 nfimad.2 φ_xA
2 nfimad.3 φ_xB
3 nfaba1 _xz|xzA
4 nfaba1 _xz|xzB
5 3 4 nfima _xz|xzAz|xzB
6 nfnfc1 x_xA
7 nfnfc1 x_xB
8 6 7 nfan x_xA_xB
9 abidnf _xAz|xzA=A
10 9 imaeq1d _xAz|xzAz|xzB=Az|xzB
11 abidnf _xBz|xzB=B
12 11 imaeq2d _xBAz|xzB=AB
13 10 12 sylan9eq _xA_xBz|xzAz|xzB=AB
14 8 13 nfceqdf _xA_xB_xz|xzAz|xzB_xAB
15 1 2 14 syl2anc φ_xz|xzAz|xzB_xAB
16 5 15 mpbii φ_xAB