Metamath Proof Explorer
Description: Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020)
|
|
Ref |
Expression |
|
Hypotheses |
nfinf.1 |
|
|
|
nfinf.2 |
|
|
|
nfinf.3 |
|
|
Assertion |
nfinf |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfinf.1 |
|
| 2 |
|
nfinf.2 |
|
| 3 |
|
nfinf.3 |
|
| 4 |
|
df-inf |
|
| 5 |
3
|
nfcnv |
|
| 6 |
1 2 5
|
nfsup |
|
| 7 |
4 6
|
nfcxfr |
|