Metamath Proof Explorer


Theorem nfiundg

Description: Bound-variable hypothesis builder for indexed union. Usage of this theorem is discouraged because it depends on ax-13 , see nfiund for a weaker version that does not require it. (Contributed by Emmett Weisz, 6-Dec-2019) (New usage is discouraged.)

Ref Expression
Hypotheses nfiundg.1 x φ
nfiundg.2 φ _ y A
nfiundg.3 φ _ y B
Assertion nfiundg φ _ y x A B

Proof

Step Hyp Ref Expression
1 nfiundg.1 x φ
2 nfiundg.2 φ _ y A
3 nfiundg.3 φ _ y B
4 df-iun x A B = z | x A z B
5 nfv z φ
6 3 nfcrd φ y z B
7 1 2 6 nfrexdg φ y x A z B
8 5 7 nfabd φ _ y z | x A z B
9 4 8 nfcxfrd φ _ y x A B