Metamath Proof Explorer


Theorem iunord

Description: The indexed union of a collection of ordinal numbers B ( x ) is ordinal. This proof is based on the proof of ssorduni , but does not use it directly, since ssorduni does not work when B is a proper class. (Contributed by Emmett Weisz, 3-Nov-2019)

Ref Expression
Assertion iunord x A Ord B Ord x A B

Proof

Step Hyp Ref Expression
1 ordtr Ord B Tr B
2 1 ralimi x A Ord B x A Tr B
3 triun x A Tr B Tr x A B
4 2 3 syl x A Ord B Tr x A B
5 eliun y x A B x A y B
6 nfra1 x x A Ord B
7 nfv x y On
8 rsp x A Ord B x A Ord B
9 ordelon Ord B y B y On
10 9 ex Ord B y B y On
11 8 10 syl6 x A Ord B x A y B y On
12 6 7 11 rexlimd x A Ord B x A y B y On
13 5 12 syl5bi x A Ord B y x A B y On
14 13 ssrdv x A Ord B x A B On
15 ordon Ord On
16 trssord Tr x A B x A B On Ord On Ord x A B
17 16 3exp Tr x A B x A B On Ord On Ord x A B
18 15 17 mpii Tr x A B x A B On Ord x A B
19 4 14 18 sylc x A Ord B Ord x A B