Step |
Hyp |
Ref |
Expression |
1 |
|
ordtr |
⊢ ( Ord 𝐵 → Tr 𝐵 ) |
2 |
1
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 Ord 𝐵 → ∀ 𝑥 ∈ 𝐴 Tr 𝐵 ) |
3 |
|
triun |
⊢ ( ∀ 𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵 ) |
4 |
2 3
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 Ord 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵 ) |
5 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
6 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝐴 Ord 𝐵 |
7 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ On |
8 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝐴 Ord 𝐵 → ( 𝑥 ∈ 𝐴 → Ord 𝐵 ) ) |
9 |
|
ordelon |
⊢ ( ( Ord 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ On ) |
10 |
9
|
ex |
⊢ ( Ord 𝐵 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ On ) ) |
11 |
8 10
|
syl6 |
⊢ ( ∀ 𝑥 ∈ 𝐴 Ord 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ On ) ) ) |
12 |
6 7 11
|
rexlimd |
⊢ ( ∀ 𝑥 ∈ 𝐴 Ord 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → 𝑦 ∈ On ) ) |
13 |
5 12
|
syl5bi |
⊢ ( ∀ 𝑥 ∈ 𝐴 Ord 𝐵 → ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ On ) ) |
14 |
13
|
ssrdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 Ord 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On ) |
15 |
|
ordon |
⊢ Ord On |
16 |
|
trssord |
⊢ ( ( Tr ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On ∧ Ord On ) → Ord ∪ 𝑥 ∈ 𝐴 𝐵 ) |
17 |
16
|
3exp |
⊢ ( Tr ∪ 𝑥 ∈ 𝐴 𝐵 → ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On → ( Ord On → Ord ∪ 𝑥 ∈ 𝐴 𝐵 ) ) ) |
18 |
15 17
|
mpii |
⊢ ( Tr ∪ 𝑥 ∈ 𝐴 𝐵 → ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ On → Ord ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
19 |
4 14 18
|
sylc |
⊢ ( ∀ 𝑥 ∈ 𝐴 Ord 𝐵 → Ord ∪ 𝑥 ∈ 𝐴 𝐵 ) |