| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtr | ⊢ ( Ord  𝐵  →  Tr  𝐵 ) | 
						
							| 2 | 1 | ralimi | ⊢ ( ∀ 𝑥  ∈  𝐴 Ord  𝐵  →  ∀ 𝑥  ∈  𝐴 Tr  𝐵 ) | 
						
							| 3 |  | triun | ⊢ ( ∀ 𝑥  ∈  𝐴 Tr  𝐵  →  Tr  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ∀ 𝑥  ∈  𝐴 Ord  𝐵  →  Tr  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 5 |  | eliun | ⊢ ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↔  ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵 ) | 
						
							| 6 |  | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝐴 Ord  𝐵 | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑥 𝑦  ∈  On | 
						
							| 8 |  | rsp | ⊢ ( ∀ 𝑥  ∈  𝐴 Ord  𝐵  →  ( 𝑥  ∈  𝐴  →  Ord  𝐵 ) ) | 
						
							| 9 |  | ordelon | ⊢ ( ( Ord  𝐵  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  On ) | 
						
							| 10 | 9 | ex | ⊢ ( Ord  𝐵  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  On ) ) | 
						
							| 11 | 8 10 | syl6 | ⊢ ( ∀ 𝑥  ∈  𝐴 Ord  𝐵  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  ∈  𝐵  →  𝑦  ∈  On ) ) ) | 
						
							| 12 | 6 7 11 | rexlimd | ⊢ ( ∀ 𝑥  ∈  𝐴 Ord  𝐵  →  ( ∃ 𝑥  ∈  𝐴 𝑦  ∈  𝐵  →  𝑦  ∈  On ) ) | 
						
							| 13 | 5 12 | biimtrid | ⊢ ( ∀ 𝑥  ∈  𝐴 Ord  𝐵  →  ( 𝑦  ∈  ∪  𝑥  ∈  𝐴 𝐵  →  𝑦  ∈  On ) ) | 
						
							| 14 | 13 | ssrdv | ⊢ ( ∀ 𝑥  ∈  𝐴 Ord  𝐵  →  ∪  𝑥  ∈  𝐴 𝐵  ⊆  On ) | 
						
							| 15 |  | ordon | ⊢ Ord  On | 
						
							| 16 |  | trssord | ⊢ ( ( Tr  ∪  𝑥  ∈  𝐴 𝐵  ∧  ∪  𝑥  ∈  𝐴 𝐵  ⊆  On  ∧  Ord  On )  →  Ord  ∪  𝑥  ∈  𝐴 𝐵 ) | 
						
							| 17 | 16 | 3exp | ⊢ ( Tr  ∪  𝑥  ∈  𝐴 𝐵  →  ( ∪  𝑥  ∈  𝐴 𝐵  ⊆  On  →  ( Ord  On  →  Ord  ∪  𝑥  ∈  𝐴 𝐵 ) ) ) | 
						
							| 18 | 15 17 | mpii | ⊢ ( Tr  ∪  𝑥  ∈  𝐴 𝐵  →  ( ∪  𝑥  ∈  𝐴 𝐵  ⊆  On  →  Ord  ∪  𝑥  ∈  𝐴 𝐵 ) ) | 
						
							| 19 | 4 14 18 | sylc | ⊢ ( ∀ 𝑥  ∈  𝐴 Ord  𝐵  →  Ord  ∪  𝑥  ∈  𝐴 𝐵 ) |