Metamath Proof Explorer


Theorem nfiundg

Description: Bound-variable hypothesis builder for indexed union. Usage of this theorem is discouraged because it depends on ax-13 , see nfiund for a weaker version that does not require it. (Contributed by Emmett Weisz, 6-Dec-2019) (New usage is discouraged.)

Ref Expression
Hypotheses nfiundg.1 xφ
nfiundg.2 φ_yA
nfiundg.3 φ_yB
Assertion nfiundg φ_yxAB

Proof

Step Hyp Ref Expression
1 nfiundg.1 xφ
2 nfiundg.2 φ_yA
3 nfiundg.3 φ_yB
4 df-iun xAB=z|xAzB
5 nfv zφ
6 3 nfcrd φyzB
7 1 2 6 nfrexd φyxAzB
8 5 7 nfabd φ_yz|xAzB
9 4 8 nfcxfrd φ_yxAB