Metamath Proof Explorer


Theorem nfmod2

Description: Bound-variable hypothesis builder for the at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 . See nfmodv for a version replacing the distinctor with a disjoint variable condition, not requiring ax-13 . (Contributed by Mario Carneiro, 14-Nov-2016) Avoid df-eu . (Revised by BJ, 14-Oct-2022) (New usage is discouraged.)

Ref Expression
Hypotheses nfmod2.1 yφ
nfmod2.2 φ¬xx=yxψ
Assertion nfmod2 φx*yψ

Proof

Step Hyp Ref Expression
1 nfmod2.1 yφ
2 nfmod2.2 φ¬xx=yxψ
3 df-mo *yψzyψy=z
4 nfv zφ
5 nfeqf1 ¬xx=yxy=z
6 5 adantl φ¬xx=yxy=z
7 2 6 nfimd φ¬xx=yxψy=z
8 1 7 nfald2 φxyψy=z
9 4 8 nfexd φxzyψy=z
10 3 9 nfxfrd φx*yψ