Metamath Proof Explorer


Theorem nfnf

Description: If x is not free in ph , then it is not free in F/ y ph . (Contributed by Mario Carneiro, 11-Aug-2016) (Proof shortened by Wolf Lammen, 30-Dec-2017)

Ref Expression
Hypothesis nfnf.1 x φ
Assertion nfnf x y φ

Proof

Step Hyp Ref Expression
1 nfnf.1 x φ
2 df-nf y φ y φ y φ
3 1 nfex x y φ
4 1 nfal x y φ
5 3 4 nfim x y φ y φ
6 2 5 nfxfr x y φ