Metamath Proof Explorer


Theorem nfopdALT

Description: Deduction version of bound-variable hypothesis builder nfop . This shows how the deduction version of a not-free theorem such as nfop can be created from the corresponding not-free inference theorem. (Contributed by NM, 19-Nov-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nfopdALT.1 φ_xA
nfopdALT.2 φ_xB
Assertion nfopdALT φ_xAB

Proof

Step Hyp Ref Expression
1 nfopdALT.1 φ_xA
2 nfopdALT.2 φ_xB
3 abidnf _xAz|xzA=A
4 3 adantr _xA_xBz|xzA=A
5 abidnf _xBz|xzB=B
6 5 adantl _xA_xBz|xzB=B
7 4 6 opeq12d _xA_xBz|xzAz|xzB=AB
8 nfaba1 _xz|xzA
9 nfaba1 _xz|xzB
10 8 9 nfop _xz|xzAz|xzB
11 1 2 7 10 nfded2 φ_xAB