Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Power Sets Operations nfovd  
				
		 
		
			
		 
		Description:   Deduction version of bound-variable hypothesis builder nfov  .
       (Contributed by NM , 13-Dec-2005)   (Proof shortened by Andrew Salmon , 22-Oct-2011) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfovd.2    ⊢   φ   →    Ⅎ   _  x  A         
					 
					
						nfovd.3    ⊢   φ   →    Ⅎ   _  x  F         
					 
					
						nfovd.4    ⊢   φ   →    Ⅎ   _  x  B         
					 
				
					Assertion 
					nfovd    ⊢   φ   →    Ⅎ   _  x  A  F  B        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfovd.2   ⊢   φ   →    Ⅎ   _  x  A         
						
							2 
								
							 
							nfovd.3   ⊢   φ   →    Ⅎ   _  x  F         
						
							3 
								
							 
							nfovd.4   ⊢   φ   →    Ⅎ   _  x  B         
						
							4 
								
							 
							df-ov  ⊢   A  F  B =   F  ⁡   A  B          
						
							5 
								1  3 
							 
							nfopd   ⊢   φ   →    Ⅎ   _  x   A  B           
						
							6 
								2  5 
							 
							nffvd   ⊢   φ   →    Ⅎ   _  x   F  ⁡   A  B            
						
							7 
								4  6 
							 
							nfcxfrd   ⊢   φ   →    Ⅎ   _  x  A  F  B