Metamath Proof Explorer


Theorem nfrmod

Description: Deduction version of nfrmo . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 17-Jun-2017) (New usage is discouraged.)

Ref Expression
Hypotheses nfrmod.1 yφ
nfrmod.2 φ_xA
nfrmod.3 φxψ
Assertion nfrmod φx*yAψ

Proof

Step Hyp Ref Expression
1 nfrmod.1 yφ
2 nfrmod.2 φ_xA
3 nfrmod.3 φxψ
4 df-rmo *yAψ*yyAψ
5 nfcvf ¬xx=y_xy
6 5 adantl φ¬xx=y_xy
7 2 adantr φ¬xx=y_xA
8 6 7 nfeld φ¬xx=yxyA
9 3 adantr φ¬xx=yxψ
10 8 9 nfand φ¬xx=yxyAψ
11 1 10 nfmod2 φx*yyAψ
12 4 11 nfxfrd φx*yAψ