Metamath Proof Explorer


Theorem ngpgrp

Description: A normed group is a group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Assertion ngpgrp GNrmGrpGGrp

Proof

Step Hyp Ref Expression
1 eqid normG=normG
2 eqid -G=-G
3 eqid distG=distG
4 1 2 3 isngp GNrmGrpGGrpGMetSpnormG-GdistG
5 4 simp1bi GNrmGrpGGrp