Metamath Proof Explorer


Theorem nlim1NEW

Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024) (Proof shortened by RP, 13-Dec-2024)

Ref Expression
Assertion nlim1NEW ¬Lim1𝑜

Proof

Step Hyp Ref Expression
1 0elon On
2 nlimsuc On¬Limsuc
3 df-1o 1𝑜=suc
4 limeq 1𝑜=sucLim1𝑜Limsuc
5 3 4 ax-mp Lim1𝑜Limsuc
6 2 5 sylnibr On¬Lim1𝑜
7 1 6 ax-mp ¬Lim1𝑜