Metamath Proof Explorer


Theorem nm0

Description: Norm of the identity element. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nm0.n N=normG
nm0.z 0˙=0G
Assertion nm0 GNrmGrpN0˙=0

Proof

Step Hyp Ref Expression
1 nm0.n N=normG
2 nm0.z 0˙=0G
3 eqid 0˙=0˙
4 ngpgrp GNrmGrpGGrp
5 eqid BaseG=BaseG
6 5 2 grpidcl GGrp0˙BaseG
7 4 6 syl GNrmGrp0˙BaseG
8 5 1 2 nmeq0 GNrmGrp0˙BaseGN0˙=00˙=0˙
9 7 8 mpdan GNrmGrpN0˙=00˙=0˙
10 3 9 mpbiri GNrmGrpN0˙=0