Metamath Proof Explorer


Theorem nmgt0

Description: The norm of a nonzero element is a positive real. (Contributed by NM, 20-Nov-2007) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses nmgt0.x X=BaseG
nmgt0.n N=normG
nmgt0.z 0˙=0G
Assertion nmgt0 GNrmGrpAXA0˙0<NA

Proof

Step Hyp Ref Expression
1 nmgt0.x X=BaseG
2 nmgt0.n N=normG
3 nmgt0.z 0˙=0G
4 1 2 3 nmeq0 GNrmGrpAXNA=0A=0˙
5 4 necon3bid GNrmGrpAXNA0A0˙
6 1 2 nmcl GNrmGrpAXNA
7 1 2 nmge0 GNrmGrpAX0NA
8 ne0gt0 NA0NANA00<NA
9 6 7 8 syl2anc GNrmGrpAXNA00<NA
10 5 9 bitr3d GNrmGrpAXA0˙0<NA