Metamath Proof Explorer


Theorem nmgt0

Description: The norm of a nonzero element is a positive real. (Contributed by NM, 20-Nov-2007) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses nmgt0.x 𝑋 = ( Base ‘ 𝐺 )
nmgt0.n 𝑁 = ( norm ‘ 𝐺 )
nmgt0.z 0 = ( 0g𝐺 )
Assertion nmgt0 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ) → ( 𝐴0 ↔ 0 < ( 𝑁𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 nmgt0.x 𝑋 = ( Base ‘ 𝐺 )
2 nmgt0.n 𝑁 = ( norm ‘ 𝐺 )
3 nmgt0.z 0 = ( 0g𝐺 )
4 1 2 3 nmeq0 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ) → ( ( 𝑁𝐴 ) = 0 ↔ 𝐴 = 0 ) )
5 4 necon3bid ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ) → ( ( 𝑁𝐴 ) ≠ 0 ↔ 𝐴0 ) )
6 1 2 nmcl ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ) → ( 𝑁𝐴 ) ∈ ℝ )
7 1 2 nmge0 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ) → 0 ≤ ( 𝑁𝐴 ) )
8 ne0gt0 ( ( ( 𝑁𝐴 ) ∈ ℝ ∧ 0 ≤ ( 𝑁𝐴 ) ) → ( ( 𝑁𝐴 ) ≠ 0 ↔ 0 < ( 𝑁𝐴 ) ) )
9 6 7 8 syl2anc ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ) → ( ( 𝑁𝐴 ) ≠ 0 ↔ 0 < ( 𝑁𝐴 ) ) )
10 5 9 bitr3d ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ) → ( 𝐴0 ↔ 0 < ( 𝑁𝐴 ) ) )