Metamath Proof Explorer


Theorem nmeq0

Description: The identity is the only element of the group with zero norm. First part of Problem 2 of Kreyszig p. 64. (Contributed by NM, 24-Nov-2006) (Revised by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x ⊒ 𝑋 = ( Base β€˜ 𝐺 )
nmf.n ⊒ 𝑁 = ( norm β€˜ 𝐺 )
nmeq0.z ⊒ 0 = ( 0g β€˜ 𝐺 )
Assertion nmeq0 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) β†’ ( ( 𝑁 β€˜ 𝐴 ) = 0 ↔ 𝐴 = 0 ) )

Proof

Step Hyp Ref Expression
1 nmf.x ⊒ 𝑋 = ( Base β€˜ 𝐺 )
2 nmf.n ⊒ 𝑁 = ( norm β€˜ 𝐺 )
3 nmeq0.z ⊒ 0 = ( 0g β€˜ 𝐺 )
4 eqid ⊒ ( dist β€˜ 𝐺 ) = ( dist β€˜ 𝐺 )
5 2 1 3 4 nmval ⊒ ( 𝐴 ∈ 𝑋 β†’ ( 𝑁 β€˜ 𝐴 ) = ( 𝐴 ( dist β€˜ 𝐺 ) 0 ) )
6 5 adantl ⊒ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) β†’ ( 𝑁 β€˜ 𝐴 ) = ( 𝐴 ( dist β€˜ 𝐺 ) 0 ) )
7 6 eqeq1d ⊒ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) β†’ ( ( 𝑁 β€˜ 𝐴 ) = 0 ↔ ( 𝐴 ( dist β€˜ 𝐺 ) 0 ) = 0 ) )
8 ngpgrp ⊒ ( 𝐺 ∈ NrmGrp β†’ 𝐺 ∈ Grp )
9 8 adantr ⊒ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) β†’ 𝐺 ∈ Grp )
10 1 3 grpidcl ⊒ ( 𝐺 ∈ Grp β†’ 0 ∈ 𝑋 )
11 9 10 syl ⊒ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) β†’ 0 ∈ 𝑋 )
12 ngpxms ⊒ ( 𝐺 ∈ NrmGrp β†’ 𝐺 ∈ ∞MetSp )
13 1 4 xmseq0 ⊒ ( ( 𝐺 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 0 ∈ 𝑋 ) β†’ ( ( 𝐴 ( dist β€˜ 𝐺 ) 0 ) = 0 ↔ 𝐴 = 0 ) )
14 12 13 syl3an1 ⊒ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 0 ∈ 𝑋 ) β†’ ( ( 𝐴 ( dist β€˜ 𝐺 ) 0 ) = 0 ↔ 𝐴 = 0 ) )
15 11 14 mpd3an3 ⊒ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) β†’ ( ( 𝐴 ( dist β€˜ 𝐺 ) 0 ) = 0 ↔ 𝐴 = 0 ) )
16 7 15 bitrd ⊒ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) β†’ ( ( 𝑁 β€˜ 𝐴 ) = 0 ↔ 𝐴 = 0 ) )