Step |
Hyp |
Ref |
Expression |
1 |
|
nmf.x |
β’ π = ( Base β πΊ ) |
2 |
|
nmf.n |
β’ π = ( norm β πΊ ) |
3 |
|
nmeq0.z |
β’ 0 = ( 0g β πΊ ) |
4 |
|
eqid |
β’ ( dist β πΊ ) = ( dist β πΊ ) |
5 |
2 1 3 4
|
nmval |
β’ ( π΄ β π β ( π β π΄ ) = ( π΄ ( dist β πΊ ) 0 ) ) |
6 |
5
|
adantl |
β’ ( ( πΊ β NrmGrp β§ π΄ β π ) β ( π β π΄ ) = ( π΄ ( dist β πΊ ) 0 ) ) |
7 |
6
|
eqeq1d |
β’ ( ( πΊ β NrmGrp β§ π΄ β π ) β ( ( π β π΄ ) = 0 β ( π΄ ( dist β πΊ ) 0 ) = 0 ) ) |
8 |
|
ngpgrp |
β’ ( πΊ β NrmGrp β πΊ β Grp ) |
9 |
8
|
adantr |
β’ ( ( πΊ β NrmGrp β§ π΄ β π ) β πΊ β Grp ) |
10 |
1 3
|
grpidcl |
β’ ( πΊ β Grp β 0 β π ) |
11 |
9 10
|
syl |
β’ ( ( πΊ β NrmGrp β§ π΄ β π ) β 0 β π ) |
12 |
|
ngpxms |
β’ ( πΊ β NrmGrp β πΊ β βMetSp ) |
13 |
1 4
|
xmseq0 |
β’ ( ( πΊ β βMetSp β§ π΄ β π β§ 0 β π ) β ( ( π΄ ( dist β πΊ ) 0 ) = 0 β π΄ = 0 ) ) |
14 |
12 13
|
syl3an1 |
β’ ( ( πΊ β NrmGrp β§ π΄ β π β§ 0 β π ) β ( ( π΄ ( dist β πΊ ) 0 ) = 0 β π΄ = 0 ) ) |
15 |
11 14
|
mpd3an3 |
β’ ( ( πΊ β NrmGrp β§ π΄ β π ) β ( ( π΄ ( dist β πΊ ) 0 ) = 0 β π΄ = 0 ) ) |
16 |
7 15
|
bitrd |
β’ ( ( πΊ β NrmGrp β§ π΄ β π ) β ( ( π β π΄ ) = 0 β π΄ = 0 ) ) |