Metamath Proof Explorer


Theorem nmo

Description: Negation of "at most one". (Contributed by Thierry Arnoux, 26-Feb-2017)

Ref Expression
Hypothesis nmo.1 yφ
Assertion nmo ¬*xφyxφxy

Proof

Step Hyp Ref Expression
1 nmo.1 yφ
2 1 mof *xφyxφx=y
3 2 notbii ¬*xφ¬yxφx=y
4 alnex y¬xφx=y¬yxφx=y
5 exnal x¬φx=y¬xφx=y
6 pm4.61 ¬φx=yφ¬x=y
7 biid x=yx=y
8 7 necon3bbii ¬x=yxy
9 8 anbi2i φ¬x=yφxy
10 6 9 bitri ¬φx=yφxy
11 10 exbii x¬φx=yxφxy
12 5 11 bitr3i ¬xφx=yxφxy
13 12 albii y¬xφx=yyxφxy
14 3 4 13 3bitr2i ¬*xφyxφxy