Metamath Proof Explorer


Theorem nmopreltpnf

Description: The norm of a Hilbert space operator is real iff it is less than infinity. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmopreltpnf T:normopTnormopT<+∞

Proof

Step Hyp Ref Expression
1 nmoprepnf T:normopTnormopT+∞
2 nmopxr T:normopT*
3 nltpnft normopT*normopT=+∞¬normopT<+∞
4 2 3 syl T:normopT=+∞¬normopT<+∞
5 4 necon2abid T:normopT<+∞normopT+∞
6 1 5 bitr4d T:normopTnormopT<+∞