Metamath Proof Explorer


Theorem nn0ge0

Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004) (Revised by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion nn0ge0 N00N

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 nngt0 N0<N
3 id N=0N=0
4 3 eqcomd N=00=N
5 2 4 orim12i NN=00<N0=N
6 1 5 sylbi N00<N0=N
7 0re 0
8 nn0re N0N
9 leloe 0N0N0<N0=N
10 7 8 9 sylancr N00N0<N0=N
11 6 10 mpbird N00N