Metamath Proof Explorer


Theorem nn0le2msqi

Description: The square function on nonnegative integers is monotonic. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypotheses nn0le2msqi.1 A0
nn0le2msqi.2 B0
Assertion nn0le2msqi ABAABB

Proof

Step Hyp Ref Expression
1 nn0le2msqi.1 A0
2 nn0le2msqi.2 B0
3 1 nn0ge0i 0A
4 2 nn0ge0i 0B
5 1 nn0rei A
6 2 nn0rei B
7 5 6 le2sqi 0A0BABA2B2
8 3 4 7 mp2an ABA2B2
9 1 nn0cni A
10 9 sqvali A2=AA
11 2 nn0cni B
12 11 sqvali B2=BB
13 10 12 breq12i A2B2AABB
14 8 13 bitri ABAABB