Description: Addition of natural numbers is commutative. Theorem 4K(2) of Enderton p. 81. (Contributed by NM, 6-May-1995) (Revised by Mario Carneiro, 15-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nnacom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |
|
2 | oveq2 | |
|
3 | 1 2 | eqeq12d | |
4 | 3 | imbi2d | |
5 | oveq1 | |
|
6 | oveq2 | |
|
7 | 5 6 | eqeq12d | |
8 | oveq1 | |
|
9 | oveq2 | |
|
10 | 8 9 | eqeq12d | |
11 | oveq1 | |
|
12 | oveq2 | |
|
13 | 11 12 | eqeq12d | |
14 | nna0r | |
|
15 | nna0 | |
|
16 | 14 15 | eqtr4d | |
17 | suceq | |
|
18 | oveq2 | |
|
19 | oveq2 | |
|
20 | suceq | |
|
21 | 19 20 | syl | |
22 | 18 21 | eqeq12d | |
23 | 22 | imbi2d | |
24 | oveq2 | |
|
25 | oveq2 | |
|
26 | suceq | |
|
27 | 25 26 | syl | |
28 | 24 27 | eqeq12d | |
29 | oveq2 | |
|
30 | oveq2 | |
|
31 | suceq | |
|
32 | 30 31 | syl | |
33 | 29 32 | eqeq12d | |
34 | oveq2 | |
|
35 | oveq2 | |
|
36 | suceq | |
|
37 | 35 36 | syl | |
38 | 34 37 | eqeq12d | |
39 | peano2 | |
|
40 | nna0 | |
|
41 | 39 40 | syl | |
42 | nna0 | |
|
43 | suceq | |
|
44 | 42 43 | syl | |
45 | 41 44 | eqtr4d | |
46 | suceq | |
|
47 | nnasuc | |
|
48 | 39 47 | sylan | |
49 | nnasuc | |
|
50 | suceq | |
|
51 | 49 50 | syl | |
52 | 48 51 | eqeq12d | |
53 | 46 52 | imbitrrid | |
54 | 53 | expcom | |
55 | 28 33 38 45 54 | finds2 | |
56 | 23 55 | vtoclga | |
57 | 56 | imp | |
58 | nnasuc | |
|
59 | 57 58 | eqeq12d | |
60 | 17 59 | imbitrrid | |
61 | 60 | expcom | |
62 | 7 10 13 16 61 | finds2 | |
63 | 4 62 | vtoclga | |
64 | 63 | imp | |