Metamath Proof Explorer


Theorem nnfoctb

Description: There exists a mapping from NN onto any (nonempty) countable set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion nnfoctb AωAff:ontoA

Proof

Step Hyp Ref Expression
1 simpr AωAA
2 reldom Rel
3 2 a1i AωRel
4 brrelex1 RelAωAV
5 3 4 mpancom AωAV
6 0sdomg AVAA
7 5 6 syl AωAA
8 7 adantr AωAAA
9 1 8 mpbird AωAA
10 nnenom ω
11 10 ensymi ω
12 11 a1i Aωω
13 domentr AωωA
14 12 13 mpdan AωA
15 14 adantr AωAA
16 fodomr AAff:ontoA
17 9 15 16 syl2anc AωAff:ontoA