Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets (cont.)
nnsdomo
Next ⟩
sucdom
Metamath Proof Explorer
Ascii
Unicode
Theorem
nnsdomo
Description:
Cardinal ordering agrees with natural number ordering.
(Contributed by
NM
, 17-Jun-1998)
Ref
Expression
Assertion
nnsdomo
⊢
A
∈
ω
∧
B
∈
ω
→
A
≺
B
↔
A
⊂
B
Proof
Step
Hyp
Ref
Expression
1
nndomo
⊢
A
∈
ω
∧
B
∈
ω
→
A
≼
B
↔
A
⊆
B
2
nneneq
⊢
A
∈
ω
∧
B
∈
ω
→
A
≈
B
↔
A
=
B
3
2
notbid
⊢
A
∈
ω
∧
B
∈
ω
→
¬
A
≈
B
↔
¬
A
=
B
4
1
3
anbi12d
⊢
A
∈
ω
∧
B
∈
ω
→
A
≼
B
∧
¬
A
≈
B
↔
A
⊆
B
∧
¬
A
=
B
5
brsdom
⊢
A
≺
B
↔
A
≼
B
∧
¬
A
≈
B
6
dfpss2
⊢
A
⊂
B
↔
A
⊆
B
∧
¬
A
=
B
7
4
5
6
3bitr4g
⊢
A
∈
ω
∧
B
∈
ω
→
A
≺
B
↔
A
⊂
B