Metamath Proof Explorer


Theorem nnsplit

Description: Express the set of positive integers as the disjoint (see nnuzdisj ) union of the first N values and the rest. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Assertion nnsplit N=1NN+1

Proof

Step Hyp Ref Expression
1 nnuz =1
2 1 a1i N=1
3 peano2nn NN+1
4 3 1 eleqtrdi NN+11
5 uzsplit N+111=1N+1-1N+1
6 4 5 syl N1=1N+1-1N+1
7 nncn NN
8 1cnd N1
9 7 8 pncand NN+1-1=N
10 9 oveq2d N1N+1-1=1N
11 10 uneq1d N1N+1-1N+1=1NN+1
12 2 6 11 3eqtrd N=1NN+1