Metamath Proof Explorer


Theorem normge0

Description: The norm of a vector is nonnegative. (Contributed by NM, 29-May-1999) (New usage is discouraged.)

Ref Expression
Assertion normge0 A0normA

Proof

Step Hyp Ref Expression
1 hiidrcl AAihA
2 hiidge0 A0AihA
3 1 2 sqrtge0d A0AihA
4 normval AnormA=AihA
5 3 4 breqtrrd A0normA