Metamath Proof Explorer


Theorem normlem4

Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 29-Jul-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normlem1.1 S
normlem1.2 F
normlem1.3 G
normlem2.4 B=SFihG+SGihF
normlem3.5 A=GihG
normlem3.6 C=FihF
normlem4.7 R
normlem4.8 S=1
Assertion normlem4 F-SRGihF-SRG=AR2+BR+C

Proof

Step Hyp Ref Expression
1 normlem1.1 S
2 normlem1.2 F
3 normlem1.3 G
4 normlem2.4 B=SFihG+SGihF
5 normlem3.5 A=GihG
6 normlem3.6 C=FihF
7 normlem4.7 R
8 normlem4.8 S=1
9 1 2 3 7 8 normlem1 F-SRGihF-SRG=FihF+SRFihG+SRGihF+R2GihG
10 1 2 3 4 5 6 7 normlem3 AR2+BR+C=FihF+SRFihG+SRGihF+R2GihG
11 9 10 eqtr4i F-SRGihF-SRG=AR2+BR+C