Metamath Proof Explorer


Theorem normlem1

Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 22-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normlem1.1 S
normlem1.2 F
normlem1.3 G
normlem1.4 R
normlem1.5 S=1
Assertion normlem1 F-SRGihF-SRG=FihF+SRFihG+SRGihF+R2GihG

Proof

Step Hyp Ref Expression
1 normlem1.1 S
2 normlem1.2 F
3 normlem1.3 G
4 normlem1.4 R
5 normlem1.5 S=1
6 4 recni R
7 1 6 mulcli SR
8 7 2 3 normlem0 F-SRGihF-SRG=FihF+SRFihG+SRGihF+SRSRGihG
9 1 6 cjmuli SR=SR
10 6 cjrebi RR=R
11 4 10 mpbi R=R
12 11 oveq2i SR=SR
13 9 12 eqtri SR=SR
14 13 negeqi SR=SR
15 1 cjcli S
16 15 6 mulneg2i SR=SR
17 14 16 eqtr4i SR=SR
18 17 oveq1i SRFihG=SRFihG
19 18 oveq2i FihF+SRFihG=FihF+SRFihG
20 1 6 mulneg2i SR=SR
21 20 eqcomi SR=SR
22 21 oveq1i SRGihF=SRGihF
23 9 oveq2i SRSR=SRSR
24 6 cjcli R
25 1 6 15 24 mul4i SRSR=SSRR
26 5 oveq1i S2=12
27 1 absvalsqi S2=SS
28 sq1 12=1
29 26 27 28 3eqtr3i SS=1
30 11 oveq2i RR=RR
31 29 30 oveq12i SSRR=1RR
32 6 6 mulcli RR
33 32 mullidi 1RR=RR
34 31 33 eqtri SSRR=RR
35 25 34 eqtri SRSR=RR
36 23 35 eqtri SRSR=RR
37 6 sqvali R2=RR
38 36 37 eqtr4i SRSR=R2
39 38 oveq1i SRSRGihG=R2GihG
40 22 39 oveq12i SRGihF+SRSRGihG=SRGihF+R2GihG
41 19 40 oveq12i FihF+SRFihG+SRGihF+SRSRGihG=FihF+SRFihG+SRGihF+R2GihG
42 8 41 eqtri F-SRGihF-SRG=FihF+SRFihG+SRGihF+R2GihG