Metamath Proof Explorer


Theorem normlem9at

Description: Lemma used to derive properties of norm. Part of Remark 3.4(B) of Beran p. 98. (Contributed by NM, 10-May-2005) (New usage is discouraged.)

Ref Expression
Assertion normlem9at ABA-BihA-B=AihA+BihB-AihB+BihA

Proof

Step Hyp Ref Expression
1 oveq1 A=ifAA0A-B=ifAA0-B
2 1 1 oveq12d A=ifAA0A-BihA-B=ifAA0-BihifAA0-B
3 id A=ifAA0A=ifAA0
4 3 3 oveq12d A=ifAA0AihA=ifAA0ihifAA0
5 4 oveq1d A=ifAA0AihA+BihB=ifAA0ihifAA0+BihB
6 oveq1 A=ifAA0AihB=ifAA0ihB
7 oveq2 A=ifAA0BihA=BihifAA0
8 6 7 oveq12d A=ifAA0AihB+BihA=ifAA0ihB+BihifAA0
9 5 8 oveq12d A=ifAA0AihA+BihB-AihB+BihA=ifAA0ihifAA0+BihB-ifAA0ihB+BihifAA0
10 2 9 eqeq12d A=ifAA0A-BihA-B=AihA+BihB-AihB+BihAifAA0-BihifAA0-B=ifAA0ihifAA0+BihB-ifAA0ihB+BihifAA0
11 oveq2 B=ifBB0ifAA0-B=ifAA0-ifBB0
12 11 11 oveq12d B=ifBB0ifAA0-BihifAA0-B=ifAA0-ifBB0ihifAA0-ifBB0
13 id B=ifBB0B=ifBB0
14 13 13 oveq12d B=ifBB0BihB=ifBB0ihifBB0
15 14 oveq2d B=ifBB0ifAA0ihifAA0+BihB=ifAA0ihifAA0+ifBB0ihifBB0
16 oveq2 B=ifBB0ifAA0ihB=ifAA0ihifBB0
17 oveq1 B=ifBB0BihifAA0=ifBB0ihifAA0
18 16 17 oveq12d B=ifBB0ifAA0ihB+BihifAA0=ifAA0ihifBB0+ifBB0ihifAA0
19 15 18 oveq12d B=ifBB0ifAA0ihifAA0+BihB-ifAA0ihB+BihifAA0=ifAA0ihifAA0+ifBB0ihifBB0-ifAA0ihifBB0+ifBB0ihifAA0
20 12 19 eqeq12d B=ifBB0ifAA0-BihifAA0-B=ifAA0ihifAA0+BihB-ifAA0ihB+BihifAA0ifAA0-ifBB0ihifAA0-ifBB0=ifAA0ihifAA0+ifBB0ihifBB0-ifAA0ihifBB0+ifBB0ihifAA0
21 ifhvhv0 ifAA0
22 ifhvhv0 ifBB0
23 21 22 21 22 normlem9 ifAA0-ifBB0ihifAA0-ifBB0=ifAA0ihifAA0+ifBB0ihifBB0-ifAA0ihifBB0+ifBB0ihifAA0
24 10 20 23 dedth2h ABA-BihA-B=AihA+BihB-AihB+BihA