Metamath Proof Explorer


Theorem normlem9

Description: Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005) (New usage is discouraged.)

Ref Expression
Hypotheses normlem8.1 A
normlem8.2 B
normlem8.3 C
normlem8.4 D
Assertion normlem9 A-BihC-D=AihC+BihD-AihD+BihC

Proof

Step Hyp Ref Expression
1 normlem8.1 A
2 normlem8.2 B
3 normlem8.3 C
4 normlem8.4 D
5 1 2 hvsubvali A-B=A+-1B
6 3 4 hvsubvali C-D=C+-1D
7 5 6 oveq12i A-BihC-D=A+-1BihC+-1D
8 neg1cn 1
9 8 2 hvmulcli -1B
10 8 4 hvmulcli -1D
11 1 9 3 10 normlem8 A+-1BihC+-1D=AihC+-1Bih-1D+Aih-1D+-1BihC
12 ax-his3 1B-1D-1Bih-1D=-1Bih-1D
13 8 2 10 12 mp3an -1Bih-1D=-1Bih-1D
14 his5 1BDBih-1D=1BihD
15 8 2 4 14 mp3an Bih-1D=1BihD
16 15 oveq2i -1Bih-1D=-11BihD
17 neg1rr 1
18 cjre 11=1
19 17 18 ax-mp 1=1
20 19 oveq2i -11=-1-1
21 ax-1cn 1
22 21 21 mul2negi -1-1=11
23 21 mullidi 11=1
24 20 22 23 3eqtri -11=1
25 24 oveq1i -11BihD=1BihD
26 8 cjcli 1
27 2 4 hicli BihD
28 8 26 27 mulassi -11BihD=-11BihD
29 27 mullidi 1BihD=BihD
30 25 28 29 3eqtr3i -11BihD=BihD
31 13 16 30 3eqtri -1Bih-1D=BihD
32 31 oveq2i AihC+-1Bih-1D=AihC+BihD
33 his5 1ADAih-1D=1AihD
34 8 1 4 33 mp3an Aih-1D=1AihD
35 19 oveq1i 1AihD=-1AihD
36 1 4 hicli AihD
37 36 mulm1i -1AihD=AihD
38 34 35 37 3eqtri Aih-1D=AihD
39 ax-his3 1BC-1BihC=-1BihC
40 8 2 3 39 mp3an -1BihC=-1BihC
41 2 3 hicli BihC
42 41 mulm1i -1BihC=BihC
43 40 42 eqtri -1BihC=BihC
44 38 43 oveq12i Aih-1D+-1BihC=-AihD+BihC
45 36 41 negdii AihD+BihC=-AihD+BihC
46 44 45 eqtr4i Aih-1D+-1BihC=AihD+BihC
47 32 46 oveq12i AihC+-1Bih-1D+Aih-1D+-1BihC=AihC+BihD+AihD+BihC
48 1 3 hicli AihC
49 48 27 addcli AihC+BihD
50 36 41 addcli AihD+BihC
51 49 50 negsubi AihC+BihD+AihD+BihC=AihC+BihD-AihD+BihC
52 47 51 eqtri AihC+-1Bih-1D+Aih-1D+-1BihC=AihC+BihD-AihD+BihC
53 7 11 52 3eqtri A-BihC-D=AihC+BihD-AihD+BihC