Metamath Proof Explorer


Theorem normpari

Description: Parallelogram law for norms. Remark 3.4(B) of Beran p. 98. (Contributed by NM, 21-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normpar.1 A
normpar.2 B
Assertion normpari normA-B2+normA+B2=2normA2+2normB2

Proof

Step Hyp Ref Expression
1 normpar.1 A
2 normpar.2 B
3 1 2 hvsubcli A-B
4 3 normsqi normA-B2=A-BihA-B
5 1 2 hvaddcli A+B
6 5 normsqi normA+B2=A+BihA+B
7 4 6 oveq12i normA-B2+normA+B2=A-BihA-B+A+BihA+B
8 1 normsqi normA2=AihA
9 8 oveq2i 2normA2=2AihA
10 1 1 hicli AihA
11 10 2timesi 2AihA=AihA+AihA
12 9 11 eqtri 2normA2=AihA+AihA
13 2 normsqi normB2=BihB
14 13 oveq2i 2normB2=2BihB
15 2 2 hicli BihB
16 15 2timesi 2BihB=BihB+BihB
17 14 16 eqtri 2normB2=BihB+BihB
18 12 17 oveq12i 2normA2+2normB2=AihA+AihA+BihB+BihB
19 1 2 1 2 normlem9 A-BihA-B=AihA+BihB-AihB+BihA
20 10 15 addcli AihA+BihB
21 1 2 hicli AihB
22 2 1 hicli BihA
23 21 22 addcli AihB+BihA
24 20 23 negsubi AihA+BihB+AihB+BihA=AihA+BihB-AihB+BihA
25 19 24 eqtr4i A-BihA-B=AihA+BihB+AihB+BihA
26 1 2 1 2 normlem8 A+BihA+B=AihA+BihB+AihB+BihA
27 25 26 oveq12i A-BihA-B+A+BihA+B=AihA+BihB+AihB+BihA+AihA+BihB+AihB+BihA
28 23 negcli AihB+BihA
29 20 28 20 23 add42i AihA+BihB+AihB+BihA+AihA+BihB+AihB+BihA=AihA+BihB+AihA+BihB+AihB+BihA+AihB+BihA
30 23 negidi AihB+BihA+AihB+BihA=0
31 30 oveq2i AihA+BihB+AihA+BihB+AihB+BihA+AihB+BihA=AihA+BihB+AihA+BihB+0
32 20 20 addcli AihA+BihB+AihA+BihB
33 32 addridi AihA+BihB+AihA+BihB+0=AihA+BihB+AihA+BihB
34 10 15 10 15 add4i AihA+BihB+AihA+BihB=AihA+AihA+BihB+BihB
35 31 33 34 3eqtri AihA+BihB+AihA+BihB+AihB+BihA+AihB+BihA=AihA+AihA+BihB+BihB
36 27 29 35 3eqtri A-BihA-B+A+BihA+B=AihA+AihA+BihB+BihB
37 18 36 eqtr4i 2normA2+2normB2=A-BihA-B+A+BihA+B
38 7 37 eqtr4i normA-B2+normA+B2=2normA2+2normB2