Metamath Proof Explorer


Theorem nornot

Description: -. is expressible via -\/ . (Contributed by Remi, 25-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)

Ref Expression
Assertion nornot ¬ φ φ φ

Proof

Step Hyp Ref Expression
1 df-nor φ φ ¬ φ φ
2 oridm φ φ φ
3 1 2 xchbinx φ φ ¬ φ
4 3 bicomi ¬ φ φ φ