Metamath Proof Explorer


Theorem nosepne

Description: The value of two non-equal surreals at the first place they differ is different. (Contributed by Scott Fenton, 24-Nov-2021)

Ref Expression
Assertion nosepne A No B No A B A x On | A x B x B x On | A x B x

Proof

Step Hyp Ref Expression
1 sltso < s Or No
2 sotrine < s Or No A No B No A B A < s B B < s A
3 1 2 mpan A No B No A B A < s B B < s A
4 nosepnelem A No B No A < s B A x On | A x B x B x On | A x B x
5 4 3expia A No B No A < s B A x On | A x B x B x On | A x B x
6 nosepnelem B No A No B < s A B x On | B x A x A x On | B x A x
7 necom A x B x B x A x
8 7 rabbii x On | A x B x = x On | B x A x
9 8 inteqi x On | A x B x = x On | B x A x
10 9 fveq2i A x On | A x B x = A x On | B x A x
11 9 fveq2i B x On | A x B x = B x On | B x A x
12 10 11 neeq12i A x On | A x B x B x On | A x B x A x On | B x A x B x On | B x A x
13 necom A x On | B x A x B x On | B x A x B x On | B x A x A x On | B x A x
14 12 13 bitri A x On | A x B x B x On | A x B x B x On | B x A x A x On | B x A x
15 6 14 sylibr B No A No B < s A A x On | A x B x B x On | A x B x
16 15 3expia B No A No B < s A A x On | A x B x B x On | A x B x
17 16 ancoms A No B No B < s A A x On | A x B x B x On | A x B x
18 5 17 jaod A No B No A < s B B < s A A x On | A x B x B x On | A x B x
19 3 18 sylbid A No B No A B A x On | A x B x B x On | A x B x
20 19 3impia A No B No A B A x On | A x B x B x On | A x B x