Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Surreal Numbers
nosgnn0
Next ⟩
nosgnn0i
Metamath Proof Explorer
Ascii
Unicode
Theorem
nosgnn0
Description:
(/)
is not a surreal sign.
(Contributed by
Scott Fenton
, 16-Jun-2011)
Ref
Expression
Assertion
nosgnn0
⊢
¬
∅
∈
1
𝑜
2
𝑜
Proof
Step
Hyp
Ref
Expression
1
1n0
⊢
1
𝑜
≠
∅
2
1
nesymi
⊢
¬
∅
=
1
𝑜
3
nsuceq0
⊢
suc
⁡
1
𝑜
≠
∅
4
necom
⊢
suc
⁡
1
𝑜
≠
∅
↔
∅
≠
suc
⁡
1
𝑜
5
df-2o
⊢
2
𝑜
=
suc
⁡
1
𝑜
6
5
neeq2i
⊢
∅
≠
2
𝑜
↔
∅
≠
suc
⁡
1
𝑜
7
4
6
bitr4i
⊢
suc
⁡
1
𝑜
≠
∅
↔
∅
≠
2
𝑜
8
3
7
mpbi
⊢
∅
≠
2
𝑜
9
8
neii
⊢
¬
∅
=
2
𝑜
10
2
9
pm3.2ni
⊢
¬
∅
=
1
𝑜
∨
∅
=
2
𝑜
11
0ex
⊢
∅
∈
V
12
11
elpr
⊢
∅
∈
1
𝑜
2
𝑜
↔
∅
=
1
𝑜
∨
∅
=
2
𝑜
13
10
12
mtbir
⊢
¬
∅
∈
1
𝑜
2
𝑜