Metamath Proof Explorer


Theorem nosgnn0

Description: (/) is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion nosgnn0 ¬ 1 𝑜 2 𝑜

Proof

Step Hyp Ref Expression
1 1n0 1 𝑜
2 1 nesymi ¬ = 1 𝑜
3 nsuceq0 suc 1 𝑜
4 necom suc 1 𝑜 suc 1 𝑜
5 df-2o 2 𝑜 = suc 1 𝑜
6 5 neeq2i 2 𝑜 suc 1 𝑜
7 4 6 bitr4i suc 1 𝑜 2 𝑜
8 3 7 mpbi 2 𝑜
9 8 neii ¬ = 2 𝑜
10 2 9 pm3.2ni ¬ = 1 𝑜 = 2 𝑜
11 0ex V
12 11 elpr 1 𝑜 2 𝑜 = 1 𝑜 = 2 𝑜
13 10 12 mtbir ¬ 1 𝑜 2 𝑜