Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted universal and existential quantification nrexdv  
				
		 
		
			
		 
		Description:   Deduction adding restricted existential quantifier to negated wff.
       (Contributed by NM , 16-Oct-2003)   (Proof shortened by Wolf Lammen , 5-Jan-2020) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypothesis 
						nrexdv.1    ⊢    φ   ∧   x  ∈  A     →   ¬   ψ          
					 
				
					Assertion 
					nrexdv    ⊢   φ   →   ¬   ∃  x  ∈  A   ψ            
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nrexdv.1   ⊢    φ   ∧   x  ∈  A     →   ¬   ψ          
						
							2 
								1 
							 
							ralrimiva   ⊢   φ   →   ∀  x  ∈  A   ¬   ψ            
						
							3 
								
							 
							ralnex   ⊢   ∀  x  ∈  A   ¬   ψ       ↔   ¬   ∃  x  ∈  A   ψ            
						
							4 
								2  3 
							 
							sylib   ⊢   φ   →   ¬   ∃  x  ∈  A   ψ