Metamath Proof Explorer


Theorem nrgdomn

Description: A nonzero normed ring is a domain. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion nrgdomn RNrmRingRDomnRNzRing

Proof

Step Hyp Ref Expression
1 domnnzr RDomnRNzRing
2 simpr RNrmRingRNzRingRNzRing
3 eqid normR=normR
4 eqid AbsValR=AbsValR
5 3 4 nrgabv RNrmRingnormRAbsValR
6 5 ne0d RNrmRingAbsValR
7 6 adantr RNrmRingRNzRingAbsValR
8 4 abvn0b RDomnRNzRingAbsValR
9 2 7 8 sylanbrc RNrmRingRNzRingRDomn
10 9 ex RNrmRingRNzRingRDomn
11 1 10 impbid2 RNrmRingRDomnRNzRing