Metamath Proof Explorer


Theorem nrgngp

Description: A normed ring is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion nrgngp RNrmRingRNrmGrp

Proof

Step Hyp Ref Expression
1 eqid normR=normR
2 eqid AbsValR=AbsValR
3 1 2 isnrg RNrmRingRNrmGrpnormRAbsValR
4 3 simplbi RNrmRingRNrmGrp