Metamath Proof Explorer


Theorem nrgring

Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion nrgring RNrmRingRRing

Proof

Step Hyp Ref Expression
1 eqid normR=normR
2 eqid AbsValR=AbsValR
3 1 2 nrgabv RNrmRingnormRAbsValR
4 2 abvrcl normRAbsValRRRing
5 3 4 syl RNrmRingRRing