Metamath Proof Explorer


Theorem nsb

Description: Any substitution in an always false formula is false. (Contributed by Steven Nguyen, 3-May-2023)

Ref Expression
Assertion nsb x¬φ¬txφ

Proof

Step Hyp Ref Expression
1 alnex x¬φ¬xφ
2 1 biimpi x¬φ¬xφ
3 spsbe txφxφ
4 2 3 nsyl x¬φ¬txφ