Metamath Proof Explorer


Theorem nssinpss

Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion nssinpss ¬ABABA

Proof

Step Hyp Ref Expression
1 inss1 ABA
2 1 biantrur ABAABAABA
3 df-ss ABAB=A
4 3 necon3bbii ¬ABABA
5 df-pss ABAABAABA
6 2 4 5 3bitr4i ¬ABABA