Metamath Proof Explorer


Theorem nsspssun

Description: Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004)

Ref Expression
Assertion nsspssun ¬ABBAB

Proof

Step Hyp Ref Expression
1 ssun2 BAB
2 1 biantrur ¬ABBBAB¬ABB
3 ssid BB
4 3 biantru ABABBB
5 unss ABBBABB
6 4 5 bitri ABABB
7 2 6 xchnxbir ¬ABBAB¬ABB
8 dfpss3 BABBAB¬ABB
9 7 8 bitr4i ¬ABBAB