Description: Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nsspssun | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ 𝐵 ⊊ ( 𝐴 ∪ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 | ⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 2 | 1 | biantrur | ⊢ ( ¬ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐵 ↔ ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ¬ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐵 ) ) |
| 3 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
| 4 | 3 | biantru | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) ) |
| 5 | unss | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐵 ) | |
| 6 | 4 5 | bitri | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐵 ) |
| 7 | 2 6 | xchnxbir | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ¬ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐵 ) ) |
| 8 | dfpss3 | ⊢ ( 𝐵 ⊊ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ¬ ( 𝐴 ∪ 𝐵 ) ⊆ 𝐵 ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ¬ 𝐴 ⊆ 𝐵 ↔ 𝐵 ⊊ ( 𝐴 ∪ 𝐵 ) ) |