Metamath Proof Explorer


Theorem ntrelmap

Description: The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021)

Ref Expression
Hypotheses ntrrn.x X = J
ntrrn.i I = int J
Assertion ntrelmap J Top I 𝒫 X 𝒫 X

Proof

Step Hyp Ref Expression
1 ntrrn.x X = J
2 ntrrn.i I = int J
3 1 2 ntrf2 J Top I : 𝒫 X 𝒫 X
4 1 topopn J Top X J
5 4 pwexd J Top 𝒫 X V
6 5 5 elmapd J Top I 𝒫 X 𝒫 X I : 𝒫 X 𝒫 X
7 3 6 mpbird J Top I 𝒫 X 𝒫 X