Description: The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrrn.x | |- X = U. J | |
| ntrrn.i | |- I = ( int ` J ) | ||
| Assertion | ntrelmap | |- ( J e. Top -> I e. ( ~P X ^m ~P X ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ntrrn.x | |- X = U. J | |
| 2 | ntrrn.i | |- I = ( int ` J ) | |
| 3 | 1 2 | ntrf2 | |- ( J e. Top -> I : ~P X --> ~P X ) | 
| 4 | 1 | topopn | |- ( J e. Top -> X e. J ) | 
| 5 | 4 | pwexd | |- ( J e. Top -> ~P X e. _V ) | 
| 6 | 5 5 | elmapd | |- ( J e. Top -> ( I e. ( ~P X ^m ~P X ) <-> I : ~P X --> ~P X ) ) | 
| 7 | 3 6 | mpbird | |- ( J e. Top -> I e. ( ~P X ^m ~P X ) ) |