Description: The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 | |
| ntrrn.i | ⊢ 𝐼 = ( int ‘ 𝐽 ) | ||
| Assertion | ntrelmap | ⊢ ( 𝐽 ∈ Top → 𝐼 ∈ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ntrrn.i | ⊢ 𝐼 = ( int ‘ 𝐽 ) | |
| 3 | 1 2 | ntrf2 | ⊢ ( 𝐽 ∈ Top → 𝐼 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) | 
| 4 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) | 
| 5 | 4 | pwexd | ⊢ ( 𝐽 ∈ Top → 𝒫 𝑋 ∈ V ) | 
| 6 | 5 5 | elmapd | ⊢ ( 𝐽 ∈ Top → ( 𝐼 ∈ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ↔ 𝐼 : 𝒫 𝑋 ⟶ 𝒫 𝑋 ) ) | 
| 7 | 3 6 | mpbird | ⊢ ( 𝐽 ∈ Top → 𝐼 ∈ ( 𝒫 𝑋 ↑m 𝒫 𝑋 ) ) |