Description: The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrrn.x | |- X = U. J |
|
ntrrn.i | |- I = ( int ` J ) |
||
Assertion | ntrf2 | |- ( J e. Top -> I : ~P X --> ~P X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrrn.x | |- X = U. J |
|
2 | ntrrn.i | |- I = ( int ` J ) |
|
3 | 1 2 | ntrf | |- ( J e. Top -> I : ~P X --> J ) |
4 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
5 | topgele | |- ( J e. ( TopOn ` X ) -> ( { (/) , X } C_ J /\ J C_ ~P X ) ) |
|
6 | 4 5 | sylbi | |- ( J e. Top -> ( { (/) , X } C_ J /\ J C_ ~P X ) ) |
7 | 6 | simprd | |- ( J e. Top -> J C_ ~P X ) |
8 | 3 7 | fssd | |- ( J e. Top -> I : ~P X --> ~P X ) |