Description: The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrrn.x | |- X = U. J | |
| ntrrn.i | |- I = ( int ` J ) | ||
| Assertion | ntrf2 | |- ( J e. Top -> I : ~P X --> ~P X ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ntrrn.x | |- X = U. J | |
| 2 | ntrrn.i | |- I = ( int ` J ) | |
| 3 | 1 2 | ntrf | |- ( J e. Top -> I : ~P X --> J ) | 
| 4 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) | 
| 5 | topgele |  |-  ( J e. ( TopOn ` X ) -> ( { (/) , X } C_ J /\ J C_ ~P X ) ) | |
| 6 | 4 5 | sylbi |  |-  ( J e. Top -> ( { (/) , X } C_ J /\ J C_ ~P X ) ) | 
| 7 | 6 | simprd | |- ( J e. Top -> J C_ ~P X ) | 
| 8 | 3 7 | fssd | |- ( J e. Top -> I : ~P X --> ~P X ) |