Metamath Proof Explorer


Theorem ntrf2

Description: The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021)

Ref Expression
Hypotheses ntrrn.x
|- X = U. J
ntrrn.i
|- I = ( int ` J )
Assertion ntrf2
|- ( J e. Top -> I : ~P X --> ~P X )

Proof

Step Hyp Ref Expression
1 ntrrn.x
 |-  X = U. J
2 ntrrn.i
 |-  I = ( int ` J )
3 1 2 ntrf
 |-  ( J e. Top -> I : ~P X --> J )
4 1 toptopon
 |-  ( J e. Top <-> J e. ( TopOn ` X ) )
5 topgele
 |-  ( J e. ( TopOn ` X ) -> ( { (/) , X } C_ J /\ J C_ ~P X ) )
6 4 5 sylbi
 |-  ( J e. Top -> ( { (/) , X } C_ J /\ J C_ ~P X ) )
7 6 simprd
 |-  ( J e. Top -> J C_ ~P X )
8 3 7 fssd
 |-  ( J e. Top -> I : ~P X --> ~P X )