| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrrn.x |  |-  X = U. J | 
						
							| 2 |  | ntrrn.i |  |-  I = ( int ` J ) | 
						
							| 3 |  | vpwex |  |-  ~P s e. _V | 
						
							| 4 | 3 | inex2 |  |-  ( J i^i ~P s ) e. _V | 
						
							| 5 | 4 | uniex |  |-  U. ( J i^i ~P s ) e. _V | 
						
							| 6 |  | eqid |  |-  ( s e. ~P X |-> U. ( J i^i ~P s ) ) = ( s e. ~P X |-> U. ( J i^i ~P s ) ) | 
						
							| 7 | 5 6 | fnmpti |  |-  ( s e. ~P X |-> U. ( J i^i ~P s ) ) Fn ~P X | 
						
							| 8 | 1 | ntrfval |  |-  ( J e. Top -> ( int ` J ) = ( s e. ~P X |-> U. ( J i^i ~P s ) ) ) | 
						
							| 9 | 2 8 | eqtrid |  |-  ( J e. Top -> I = ( s e. ~P X |-> U. ( J i^i ~P s ) ) ) | 
						
							| 10 | 9 | fneq1d |  |-  ( J e. Top -> ( I Fn ~P X <-> ( s e. ~P X |-> U. ( J i^i ~P s ) ) Fn ~P X ) ) | 
						
							| 11 | 7 10 | mpbiri |  |-  ( J e. Top -> I Fn ~P X ) | 
						
							| 12 | 1 2 | ntrrn |  |-  ( J e. Top -> ran I C_ J ) | 
						
							| 13 |  | df-f |  |-  ( I : ~P X --> J <-> ( I Fn ~P X /\ ran I C_ J ) ) | 
						
							| 14 | 11 12 13 | sylanbrc |  |-  ( J e. Top -> I : ~P X --> J ) |