Metamath Proof Explorer


Theorem ntrf

Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021)

Ref Expression
Hypotheses ntrrn.x
|- X = U. J
ntrrn.i
|- I = ( int ` J )
Assertion ntrf
|- ( J e. Top -> I : ~P X --> J )

Proof

Step Hyp Ref Expression
1 ntrrn.x
 |-  X = U. J
2 ntrrn.i
 |-  I = ( int ` J )
3 vpwex
 |-  ~P s e. _V
4 3 inex2
 |-  ( J i^i ~P s ) e. _V
5 4 uniex
 |-  U. ( J i^i ~P s ) e. _V
6 eqid
 |-  ( s e. ~P X |-> U. ( J i^i ~P s ) ) = ( s e. ~P X |-> U. ( J i^i ~P s ) )
7 5 6 fnmpti
 |-  ( s e. ~P X |-> U. ( J i^i ~P s ) ) Fn ~P X
8 1 ntrfval
 |-  ( J e. Top -> ( int ` J ) = ( s e. ~P X |-> U. ( J i^i ~P s ) ) )
9 2 8 syl5eq
 |-  ( J e. Top -> I = ( s e. ~P X |-> U. ( J i^i ~P s ) ) )
10 9 fneq1d
 |-  ( J e. Top -> ( I Fn ~P X <-> ( s e. ~P X |-> U. ( J i^i ~P s ) ) Fn ~P X ) )
11 7 10 mpbiri
 |-  ( J e. Top -> I Fn ~P X )
12 1 2 ntrrn
 |-  ( J e. Top -> ran I C_ J )
13 df-f
 |-  ( I : ~P X --> J <-> ( I Fn ~P X /\ ran I C_ J ) )
14 11 12 13 sylanbrc
 |-  ( J e. Top -> I : ~P X --> J )