Step |
Hyp |
Ref |
Expression |
1 |
|
ntrrn.x |
|- X = U. J |
2 |
|
ntrrn.i |
|- I = ( int ` J ) |
3 |
|
vpwex |
|- ~P s e. _V |
4 |
3
|
inex2 |
|- ( J i^i ~P s ) e. _V |
5 |
4
|
uniex |
|- U. ( J i^i ~P s ) e. _V |
6 |
|
eqid |
|- ( s e. ~P X |-> U. ( J i^i ~P s ) ) = ( s e. ~P X |-> U. ( J i^i ~P s ) ) |
7 |
5 6
|
fnmpti |
|- ( s e. ~P X |-> U. ( J i^i ~P s ) ) Fn ~P X |
8 |
1
|
ntrfval |
|- ( J e. Top -> ( int ` J ) = ( s e. ~P X |-> U. ( J i^i ~P s ) ) ) |
9 |
2 8
|
syl5eq |
|- ( J e. Top -> I = ( s e. ~P X |-> U. ( J i^i ~P s ) ) ) |
10 |
9
|
fneq1d |
|- ( J e. Top -> ( I Fn ~P X <-> ( s e. ~P X |-> U. ( J i^i ~P s ) ) Fn ~P X ) ) |
11 |
7 10
|
mpbiri |
|- ( J e. Top -> I Fn ~P X ) |
12 |
1 2
|
ntrrn |
|- ( J e. Top -> ran I C_ J ) |
13 |
|
df-f |
|- ( I : ~P X --> J <-> ( I Fn ~P X /\ ran I C_ J ) ) |
14 |
11 12 13
|
sylanbrc |
|- ( J e. Top -> I : ~P X --> J ) |