Step |
Hyp |
Ref |
Expression |
1 |
|
ntrrn.x |
|- X = U. J |
2 |
|
ntrrn.i |
|- I = ( int ` J ) |
3 |
2
|
rneqi |
|- ran I = ran ( int ` J ) |
4 |
|
vpwex |
|- ~P s e. _V |
5 |
4
|
inex2 |
|- ( J i^i ~P s ) e. _V |
6 |
5
|
uniex |
|- U. ( J i^i ~P s ) e. _V |
7 |
6
|
rgenw |
|- A. s e. ~P X U. ( J i^i ~P s ) e. _V |
8 |
|
nfcv |
|- F/_ s ~P X |
9 |
8
|
fnmptf |
|- ( A. s e. ~P X U. ( J i^i ~P s ) e. _V -> ( s e. ~P X |-> U. ( J i^i ~P s ) ) Fn ~P X ) |
10 |
7 9
|
mp1i |
|- ( J e. Top -> ( s e. ~P X |-> U. ( J i^i ~P s ) ) Fn ~P X ) |
11 |
1
|
ntrfval |
|- ( J e. Top -> ( int ` J ) = ( s e. ~P X |-> U. ( J i^i ~P s ) ) ) |
12 |
11
|
fneq1d |
|- ( J e. Top -> ( ( int ` J ) Fn ~P X <-> ( s e. ~P X |-> U. ( J i^i ~P s ) ) Fn ~P X ) ) |
13 |
10 12
|
mpbird |
|- ( J e. Top -> ( int ` J ) Fn ~P X ) |
14 |
|
elpwi |
|- ( s e. ~P X -> s C_ X ) |
15 |
1
|
ntropn |
|- ( ( J e. Top /\ s C_ X ) -> ( ( int ` J ) ` s ) e. J ) |
16 |
15
|
ex |
|- ( J e. Top -> ( s C_ X -> ( ( int ` J ) ` s ) e. J ) ) |
17 |
14 16
|
syl5 |
|- ( J e. Top -> ( s e. ~P X -> ( ( int ` J ) ` s ) e. J ) ) |
18 |
17
|
ralrimiv |
|- ( J e. Top -> A. s e. ~P X ( ( int ` J ) ` s ) e. J ) |
19 |
|
fnfvrnss |
|- ( ( ( int ` J ) Fn ~P X /\ A. s e. ~P X ( ( int ` J ) ` s ) e. J ) -> ran ( int ` J ) C_ J ) |
20 |
13 18 19
|
syl2anc |
|- ( J e. Top -> ran ( int ` J ) C_ J ) |
21 |
3 20
|
eqsstrid |
|- ( J e. Top -> ran I C_ J ) |