Metamath Proof Explorer


Theorem ntrrn

Description: The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021)

Ref Expression
Hypotheses ntrrn.x X = J
ntrrn.i I = int J
Assertion ntrrn J Top ran I J

Proof

Step Hyp Ref Expression
1 ntrrn.x X = J
2 ntrrn.i I = int J
3 2 rneqi ran I = ran int J
4 vpwex 𝒫 s V
5 4 inex2 J 𝒫 s V
6 5 uniex J 𝒫 s V
7 6 rgenw s 𝒫 X J 𝒫 s V
8 nfcv _ s 𝒫 X
9 8 fnmptf s 𝒫 X J 𝒫 s V s 𝒫 X J 𝒫 s Fn 𝒫 X
10 7 9 mp1i J Top s 𝒫 X J 𝒫 s Fn 𝒫 X
11 1 ntrfval J Top int J = s 𝒫 X J 𝒫 s
12 11 fneq1d J Top int J Fn 𝒫 X s 𝒫 X J 𝒫 s Fn 𝒫 X
13 10 12 mpbird J Top int J Fn 𝒫 X
14 elpwi s 𝒫 X s X
15 1 ntropn J Top s X int J s J
16 15 ex J Top s X int J s J
17 14 16 syl5 J Top s 𝒫 X int J s J
18 17 ralrimiv J Top s 𝒫 X int J s J
19 fnfvrnss int J Fn 𝒫 X s 𝒫 X int J s J ran int J J
20 13 18 19 syl2anc J Top ran int J J
21 3 20 eqsstrid J Top ran I J